Accurate eQTL prioritization with an ensemble-based framework.
نویسندگان
چکیده
We present a novel ensemble-based computational framework, EnsembleExpr, that achieved the best performance in the Fourth Critical Assessment of Genome Interpretation expression quantitative trait locus "(eQTL)-causal SNPs" challenge for identifying eQTLs and prioritizing their gene expression effects. eQTLs are genome sequence variants that result in gene expression changes and are thus prime suspects in the search for contributions to the causality of complex traits. When EnsembleExpr is trained on data from massively parallel reporter assays, it accurately predicts reporter expression levels from unseen regulatory sequences and identifies sequence variants that exhibit significant changes in reporter expression. Compared with other state-of-the-art methods, EnsembleExpr achieved competitive performance when applied on eQTL datasets determined by other protocols. We envision EnsembleExpr to be a resource to help interpret noncoding regulatory variants and prioritize disease-associated mutations for downstream validation.
منابع مشابه
EPSILON: an eQTL prioritization framework using similarity measures derived from local networks
MOTIVATION When genomic data are associated with gene expression data, the resulting expression quantitative trait loci (eQTL) will likely span multiple genes. eQTL prioritization techniques can be used to select the most likely causal gene affecting the expression of a target gene from a list of candidates. As an input, these techniques use physical interaction networks that often contain high...
متن کاملClassifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملA Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human mutation
دوره 38 9 شماره
صفحات -
تاریخ انتشار 2017